Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(1): 153-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182825

RESUMO

In the mammalian liver, hepatocytes exhibit diverse metabolic and functional profiles based on their location within the liver lobule. However, it is unclear whether this spatial variation, called zonation, is governed by a well-defined gene regulatory code. Here, using a combination of single-cell multiomics, spatial omics, massively parallel reporter assays and deep learning, we mapped enhancer-gene regulatory networks across mouse liver cell types. We found that zonation affects gene expression and chromatin accessibility in hepatocytes, among other cell types. These states are driven by the repressors TCF7L1 and TBX3, alongside other core hepatocyte transcription factors, such as HNF4A, CEBPA, FOXA1 and ONECUT1. To examine the architecture of the enhancers driving these cell states, we trained a hierarchical deep learning model called DeepLiver. Our study provides a multimodal understanding of the regulatory code underlying hepatocyte identity and their zonation state that can be used to engineer enhancers with specific activity levels and zonation patterns.


Assuntos
Aprendizado Profundo , Multiômica , Camundongos , Animais , Redes Reguladoras de Genes , Fígado/metabolismo , Hepatócitos , Mamíferos
2.
Nat Methods ; 20(9): 1355-1367, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37443338

RESUMO

Joint profiling of chromatin accessibility and gene expression in individual cells provides an opportunity to decipher enhancer-driven gene regulatory networks (GRNs). Here we present a method for the inference of enhancer-driven GRNs, called SCENIC+. SCENIC+ predicts genomic enhancers along with candidate upstream transcription factors (TFs) and links these enhancers to candidate target genes. To improve both recall and precision of TF identification, we curated and clustered a motif collection with more than 30,000 motifs. We benchmarked SCENIC+ on diverse datasets from different species, including human peripheral blood mononuclear cells, ENCODE cell lines, melanoma cell states and Drosophila retinal development. Next, we exploit SCENIC+ predictions to study conserved TFs, enhancers and GRNs between human and mouse cell types in the cerebral cortex. Finally, we use SCENIC+ to study the dynamics of gene regulation along differentiation trajectories and the effect of TF perturbations on cell state. SCENIC+ is available at scenicplus.readthedocs.io .


Assuntos
Redes Reguladoras de Genes , Multiômica , Animais , Humanos , Camundongos , Leucócitos Mononucleares , Regulação da Expressão Gênica , Cromatina/genética , Drosophila/genética , Elementos Facilitadores Genéticos
3.
Genome Biol ; 23(1): 55, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172874

RESUMO

BACKGROUND: Multiplexing of samples in single-cell RNA-seq studies allows a significant reduction of the experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or -lipids allow barcoding sample-specific cells, a process called "hashing." RESULTS: Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. We also compare TotalSeq-B antibodies with CellPlex reagents (10x Genomics) on human PBMCs and TotalSeq-B with different lipids on primary mouse tissues. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines and mouse strains. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects. CONCLUSIONS: Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. On nuclei datasets, lipid hashing delivers the best results. Lipid hashing also outperforms antibodies on cells isolated from mouse brain. However, antibodies demonstrate better results on tissues like spleen or lung.


Assuntos
COVID-19/sangue , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Anticorpos/química , Estudos de Casos e Controles , Linhagem Celular Tumoral , Núcleo Celular/química , Humanos , Lipídeos/química , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos/química , Neutrófilos/imunologia , Neutrófilos/virologia
4.
Genome Biol ; 20(1): 187, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477173

RESUMO

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.


Assuntos
Genoma de Inseto , Genômica , Insetos Vetores/genética , Trypanosoma/parasitologia , Moscas Tsé-Tsé/genética , Animais , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Genes Ligados ao Cromossomo X , Geografia , Proteínas de Insetos/genética , Masculino , Mutagênese Insercional/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Homologia de Sequência de Aminoácidos , Sintenia/genética , Wolbachia/genética
5.
Front Microbiol ; 10: 1650, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396178

RESUMO

Sodalis glossinidius, a vertically transmitted facultative symbiont of the tsetse fly, is a bacterium in the early/intermediate state of its transition toward symbiosis, representing an important model for investigating how the insect host immune defense response is regulated to allow endosymbionts to establish a chronic infection within their hosts without being eliminated. In this study, we report on the establishment of a tsetse fly line devoid of S. glossinidius only, allowing us to experimentally investigate (i) the complex immunological interactions between a single bacterial species and its host, (ii) how the symbiont population is kept under control, and (iii) the impact of the symbiont on the vector competence of the tsetse fly to transmit the sleeping sickness parasite. Comparative transcriptome analysis showed no difference in the expression of genes involved in innate immune processes between symbiont-harboring (Gmm Sod+ ) and S. glossinidius-free (Gmm Sod-) flies. Re-exposure of (Gmm Sod-) flies to the endosymbiotic bacterium resulted in a moderate immune response, whereas exposure to pathogenic E. coli or to a close non-insect associated relative of S. glossinidius, i.e., S. praecaptivus, resulted in full immune activation. We also showed that S. glossinidius densities are not affected by experimental activation or suppression of the host immune system, indicating that S. glossinidius is resistant to mounted immune attacks and that the host immune system does not play a major role in controlling S. glossinidius proliferation. Finally, we demonstrate that the absence or presence of S. glossinidius in the tsetse fly does not alter its capacity to mount an immune response to pathogens nor does it affect the fly's susceptibility toward trypanosome infection.

6.
Dev Comp Immunol ; 98: 181-188, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075296

RESUMO

Tsetse flies (Glossina sp.) are medically and veterinary important vectors of African trypanosomes, protozoan parasites that cause devastating diseases in humans and livestock in sub-Saharan Africa. These flies feed exclusively on vertebrate blood and harbor a limited diversity of obligate and facultative bacterial commensals. They have a well-developed innate immune system that plays a key role in protecting the fly against invading pathogens and in modulating the fly's ability to transmit African trypanosomes. In this review, we briefly summarize our current knowledge on the tsetse fly innate immune system and its interaction with the bacterial commensals and the trypanosome parasite.


Assuntos
Imunidade Inata , Insetos Vetores/imunologia , Trypanosoma/imunologia , Tripanossomíase Africana/imunologia , Moscas Tsé-Tsé/imunologia , Animais , Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Simbiose/imunologia , Trypanosoma/microbiologia , Trypanosoma/fisiologia , Tripanossomíase Africana/microbiologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia
7.
BMC Genomics ; 17(1): 971, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884110

RESUMO

BACKGROUND: For their transmission, African trypanosomes rely on their blood feeding insect vector, the tsetse fly (Glossina sp.). The ingested Trypanosoma brucei parasites have to overcome a series of barriers in the tsetse fly alimentary tract to finally develop into the infective metacyclic forms in the salivary glands that are transmitted to a mammalian host by the tsetse bite. The parasite population in the salivary gland is dense with a significant number of trypanosomes tightly attached to the epithelial cells. Our current knowledge on the impact of the infection on the salivary gland functioning is very limited. Therefore, this study aimed to gain a deeper insight into the global gene expression changes in the salivary glands of Glossina morsitans morsitans in response to an infection with the T. brucei parasite. A detailed whole transcriptome comparison of midgut-infected tsetse with and without a mature salivary gland infection was performed to study the impact of a trypanosome infection on different aspects of the salivary gland functioning and the mechanisms that are induced in this tissue to tolerate the infection i.e. to control the negative impact of the parasite presence. Moreover, a transcriptome comparison with age-matched uninfected flies was done to see whether gene expression in the salivary glands is already affected by a trypanosome infection in the tsetse midgut. RESULTS: By a RNA-sequencing (RNA-seq) approach we compared the whole transcriptomes of flies with a T. brucei salivary gland/midgut infection versus flies with only a midgut infection or versus non-infected flies, all with the same age and feeding history. More than 7500 salivary gland transcripts were detected from which a core group of 1214 differentially expressed genes (768 up- and 446 down-regulated) were shared between the two transcriptional comparisons. Gene Ontology enrichment analysis and detailed gene expression comparisons showed a diverse impact at the gene transcript level. Increased expression was observed for transcripts encoding for proteins involved in immunity (like several genes of the Imd-signaling pathway, serine proteases, serpins and thioester-containing proteins), detoxification of reactive species, cell death, cytoskeleton organization, cell junction and repair. Decreased expression was observed for transcripts encoding the major secreted proteins such as 5'-nucleotidases, adenosine deaminases and the nucleic acid binding proteins Tsals. Moreover, expression of some gene categories in the salivary glands were found to be already affected by a trypanosome midgut infection, before the parasite reaches the salivary glands. CONCLUSIONS: This study reveals that the T. brucei population in the tsetse salivary gland has a negative impact on its functioning and on the integrity of the gland epithelium. Our RNA-seq data suggest induction of a strong local tissue response in order to control the epithelial cell damage, the ROS intoxication of the cellular environment and the parasite infection, resulting in the fly tolerance to the infection. The modified expression of some gene categories in the tsetse salivary glands by a trypanosome infection at the midgut level indicate a putative anticipatory response in the salivary glands, before the parasite reaches this tissue.


Assuntos
Insetos Vetores , Glândulas Salivares/metabolismo , Glândulas Salivares/parasitologia , Transcriptoma , Trypanosoma brucei brucei , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/parasitologia , Adaptação Biológica , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Masculino , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Transdução de Sinais , Moscas Tsé-Tsé/metabolismo , Cicatrização/genética
8.
Vet Parasitol ; 220: 15-22, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26995716

RESUMO

Animal trypanosomosis caused by Trypanosoma vivax (T. vivax) is a devastating disease causing serious economic losses. Most molecular diagnostics for T. vivax infection target the ribosomal DNA locus (rDNA) but are challenged by the heterogeneity among T. vivax strains. In this study, we investigated the rDNA heterogeneity of Ethiopian T. vivax strains in relation to their presence in tsetse-infested and tsetse-free areas and its effect on molecular diagnosis. We sequenced the rDNA loci of six Ethiopian (three from tsetse-infested and three from tsetse-free areas) and one Nigerian T. vivax strain. We analysed the obtained sequences in silico for primer-mismatches of some commonly used diagnostic PCR assays and for GC content. With these data, we selected some rDNA diagnostic PCR assays for evaluation of their diagnostic accuracy. Furthermore we constructed two phylogenetic networks based on sequences within the smaller subunit (SSU) of 18S and within the 5.8S and internal transcribed spacer 2 (ITS2) to assess the relatedness of Ethiopian T. vivax strains to strains from other African countries and from South America. In silico analysis of the rDNA sequence showed important mismatches of some published diagnostic PCR primers and high GC content of T. vivax rDNA. The evaluation of selected diagnostic PCR assays with specimens from cattle under natural T. vivax challenge showed that this high GC content interferes with the diagnostic accuracy of PCR, especially in cases of mixed infections with T. congolense. Adding betain to the PCR reaction mixture can enhance the amplification of T. vivax rDNA but decreases the sensitivity for T. congolense and Trypanozoon. The networks illustrated that Ethiopian T. vivax strains are considerably heterogeneous and two strains (one from tsetse-infested and one from tsetse-free area) are more related to the West African and South American strains than to the East African strains. The rDNA locus sequence of six Ethiopian T. vivax strains showed important differences and higher GC content compared to other animal trypanosomes but could not be related to their origin from tsetse-infested or tsetse-free area. The high GC content of T. vivax DNA renders accurate diagnosis of all pathogenic animal trypanosomes with one single PCR problematic.


Assuntos
Doenças dos Bovinos/parasitologia , Trypanosoma/genética , Tripanossomíase/veterinária , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , DNA Ribossômico/genética , Etiópia , Haplótipos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Trypanosoma/classificação , Tripanossomíase/diagnóstico , Tripanossomíase/parasitologia , Moscas Tsé-Tsé/parasitologia
9.
Genome Biol Evol ; 8(1): 253-70, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739168

RESUMO

SINEs (Short INterspersed Elements) are widely distributed among eukaryotes. Some SINE families are organized in superfamilies characterized by a shared central domain. These central domains are conserved across species, classes, and even phyla. Here we report the identification of two novel such superfamilies in the genomes of gastropod and bivalve mollusks. The central conserved domain of the first superfamily is present in SINEs in Caenogastropoda and Vetigastropoda as well as in all four subclasses of Bivalvia. We designated the domain MESC (Romanian for MElc-snail and SCoica-mussel) because it appears to be restricted to snails and mussels. The second superfamily is restricted to Caenogastropoda. Its central conserved domain-Snail-is related to the Nin-DC domain. Furthermore, we provide evidence that a 40-bp subdomain of the SINE V-domain is conserved in SINEs in mollusks and arthropods. It is predicted to form a stable stem-loop structure that is preserved in the context of the overall SINE RNA secondary structure in invertebrates. Our analysis also recovered short retrotransposons with a Long INterspersed Element (LINE)-derived 5' end. These share the body and/or the tail with transfer RNA (tRNA)-derived SINEs within and across species. Finally, we identified CORE SINEs in gastropods and bivalves-extending the distribution range of this superfamily.


Assuntos
Bivalves/genética , Evolução Molecular , Gastrópodes/genética , Elementos Nucleotídeos Curtos e Dispersos , Animais , Sequência de Bases , Sequência Conservada , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular
10.
Philos Trans R Soc Lond B Biol Sci ; 370(1660): 20130382, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25487333

RESUMO

We compared DNA, pollen and macrofossil data obtained from Weichselian interstadial (age more than 40 kyr) and Holocene (maximum age 8400 cal yr BP) peat sediments from northern Europe and used them to reconstruct contemporary floristic compositions at two sites. The majority of the samples provided plant DNA sequences of good quality with success amplification rates depending on age. DNA and sequencing analysis provided five plant taxa from the older site and nine taxa from the younger site, corresponding to 7% and 15% of the total number of taxa identified by the three proxies together. At both sites, pollen analysis detected the largest (54) and DNA the lowest (10) number of taxa, but five of the DNA taxa were not detected by pollen and macrofossils. The finding of a larger overlap between DNA and pollen than between DNA and macrofossils proxies seems to go against our previous suggestion based on lacustrine sediments that DNA originates principally from plant tissues and less from pollen. At both sites, we also detected Quercus spp. DNA, but few pollen grains were found in the record, and these are normally interpreted as long-distance dispersal. We confirm that in palaeoecological investigations, sedimentary DNA analysis is less comprehensive than classical morphological analysis, but is a complementary and important tool to obtain a more complete picture of past flora.


Assuntos
DNA de Plantas/genética , Fósseis , Sedimentos Geológicos/química , Pólen/genética , Solo/química , Sequência de Bases , DNA de Plantas/classificação , DNA de Plantas/história , Finlândia , História Antiga , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Multiplex , Federação Russa , Análise de Sequência de DNA/métodos
11.
Mol Ecol ; 22(13): 3511-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23587049

RESUMO

Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen-based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species-specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species-specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species-specific primers to provide the most comprehensive signal from the environment.


Assuntos
Sedimentos Geológicos/análise , Lagos/análise , Plantas/genética , Pólen/química , Biodiversidade , Clonagem Molecular , Código de Barras de DNA Taxonômico , Primers do DNA , DNA de Plantas/análise , DNA de Plantas/genética , Fósseis , Plantas/classificação , Países Escandinavos e Nórdicos , Alinhamento de Sequência , Especificidade da Espécie
12.
Science ; 335(6072): 1083-6, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383845

RESUMO

It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west-an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trøndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andøya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.


Assuntos
Ecossistema , Fósseis , Camada de Gelo , Picea , Pinus , Sequência de Bases , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Europa (Continente) , Sedimentos Geológicos , Haplótipos , Dados de Sequência Molecular , Mutação , Noruega , Picea/genética , Pinus/genética , Países Escandinavos e Nórdicos , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA